首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29408篇
  免费   325篇
  国内免费   220篇
安全科学   802篇
废物处理   1060篇
环保管理   4026篇
综合类   4659篇
基础理论   8531篇
环境理论   21篇
污染及防治   7681篇
评价与监测   1743篇
社会与环境   1239篇
灾害及防治   191篇
  2022年   157篇
  2021年   178篇
  2019年   214篇
  2018年   387篇
  2017年   378篇
  2016年   554篇
  2015年   489篇
  2014年   678篇
  2013年   2132篇
  2012年   841篇
  2011年   1249篇
  2010年   1025篇
  2009年   1032篇
  2008年   1250篇
  2007年   1329篇
  2006年   1182篇
  2005年   1006篇
  2004年   1003篇
  2003年   938篇
  2002年   936篇
  2001年   1239篇
  2000年   860篇
  1999年   535篇
  1998年   420篇
  1997年   430篇
  1996年   438篇
  1995年   482篇
  1994年   438篇
  1993年   390篇
  1992年   414篇
  1991年   373篇
  1990年   376篇
  1989年   411篇
  1988年   347篇
  1987年   300篇
  1986年   276篇
  1985年   305篇
  1984年   286篇
  1983年   321篇
  1982年   322篇
  1981年   271篇
  1980年   243篇
  1979年   269篇
  1978年   229篇
  1977年   195篇
  1976年   200篇
  1975年   192篇
  1974年   172篇
  1973年   171篇
  1972年   198篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
This paper provides an overview of the impacts of rural land use on lowland streamwater phosphorus (P) and nitrogen (N) concentrations and P loads and sources in lowland streams. Based on weekly water quality monitoring, the impacts of agriculture on streamwater P and N hydrochemistry were examined along a gradient of rural–agricultural land use, by monitoring three sets of ‘paired’ (near-adjacent) rural headwater streams, draining catchments which are representative of the major geology, soil types and rural/agricultural land use types of large areas of lowland Britain. The magnitude and timing of P and N inputs were assessed and the load apportionment model (LAM) was applied to quantify ‘continuous’ (point) source and ‘flow-dependent’ (diffuse) source contributions of P to these headwater streams. The results show that intensive arable farming had only a comparatively small impact on streamwater total phosphorus (TP loads), with highly consistent stream diffuse-source TP yields of ca. 0.5 kg-P ha?1 year?1 for the predominantly arable catchments with both clay and loam soils, compared with 0.4 kg-P ha?1 year?1 for low agricultural intensity grassland/woodland on similar soil types. In contrast, intensive livestock farming on heavy clay soils resulted in dramatically higher stream diffuse-source TP yields of 2 kg-P ha?1 year?1. The streamwater hydrochemistry of the livestock-dominated catchment was characterised by high concentrations of organic P, C and N fractions, associated with manure and slurry sources. Across the study sites, the impacts of human settlement were clearly identifiable with effluent inputs from septic tanks and sewage treatment works resulting in large-scale increases in soluble reactive phosphorus (SRP) loads and concentrations. At sites heavily impacted by rural settlements, SRP concentrations under baseflow conditions reached several hundred μg-P L?1. Load apportionment modelling demonstrated significant ‘point-source’ P inputs to the streams even where there were no sewage treatment works within the upstream catchment. This indicates that, even in sparsely populated rural headwater catchments, small settlements and even isolated groups of houses are sufficient to cause significant nutrient pollution and that septic tank systems serving these rural communities are actually operating as multiple point sources, rather than a diffuse input.  相似文献   
92.
Quantitative assessments help to highlight the main features of climate policies by better identifying their strengths and weaknesses. In this study, we develop a grading system for assessing thirteen proposals for post-2012 climate policy. We believe that these proposals contain appropriate policy instruments which will be considered for discussions about how to design the post-2012 climate agreement. Our grades are based on four criteria: environmental effectiveness, cost effectiveness, distributional considerations and institutional feasibility. We analyze the grades with two complementary methods: principal component and cluster analysis. Our results entail three policy implications. Firstly, the higher the number of policy instruments a proposal comprises, the more difficult might be its implementation. Secondly, proposals which include a meaningful effort by the U.S. tend to fail in environmental effectiveness and institutional feasibility. Thirdly, we identify that the “first best” and the “second best” approaches belong to a stable policy group, and both may be considered as suitable candidates for post-2012 climate policy.  相似文献   
93.
Reducing carbon emissions from deforestation and degradation in developing countries is of the central importance in efforts to combat climate change. A study was conducted to measure carbon stocks in various land-use systems including forms and reliably estimates the impact of land use on carbon (C) stocks in the forest of Rajasthan, western India (23°3′–30°12′N longitude and 69°30′–78°17′E). 22.8% of India is forested and 0.04% is the deforestation rate of India. In Indian forest sector of western India of Aravally mountain range covered large area of deciduous forest and it’s very helpful in carbon sequestration at global level. The carbon stocks of forest, plantation (reforestation) and agricultural land in aboveground, soil organic and fine root within forest were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (533.64?±?37.54 Mg·ha?1, simplified expression of Mg (carbon) ·ha?1) was significantly greater (P?<?0.05) than the plantation (324.37?±?15.0 Mg·ha?1) and the agricultural land (120.50?±?2.17 Mg·ha?1). Soil organic carbon in the forests (172.84?±?3.78 Mg·ha?1) was also significantly greater (P?<?0.05) than the plantation (153.20?±?7.48 Mg·ha?1) and the agricultural land (108.71?±?1.68 Mg·ha?1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 30-cm layer and decreased with soil depth. The aboveground carbon (ABGC): soil organic carbon (SOC): fine root carbon ratios (FRC), was 8:4:1, 4:5:1, and 3:37:1 for the forest, plantation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land.  相似文献   
94.
As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into nearly 50 EJ yr−1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 50–100 EJ yr−1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to be 20–100 EJ yr−1 by mid- to late- century, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.  相似文献   
95.
This study investigated the particulate matter (PM) and metals in highway dry deposition and rainfall-runoff as a function of hydrologic transport and settling on an event basis. Events were differentiated as mass-limited (ML) and flow-limited (FL). Results indicate that unique and separate suspended sediment concentration (SSC) relationships with turbidity occurred for ML and FL events. Sixty minutes of quiescent settling produced a single SSC-turbidity relationship for all events. ML events transport higher proportions of settleable and sediment PM while FL events transported relatively higher suspended PM. For batch clarification with one hour of settling, ML events had generally higher treatment efficiencies compared to FL events for the same settling conditions. Highway dry deposition PM was hetero-disperse and coarse (d 50 m = 304 μm). Results indicate that the acidic rainfall is not a significant contributor to metals in runoff but is capable of leaching metals from dry deposition PM into runoff. Partitioning in retained runoff resulted in a particulate-bound predominance for most metals except Ca and Mg. While the finer fraction of dry deposition PM (< 75 μm) generates the highest metal concentrations, the highest metal mass is associated with the coarser fraction (> 75 μm).  相似文献   
96.
Land use changes and landscape processes are interrelated and influenced by multiple bio-physical and socio-economic driving factors, resulting in a complex, multi-scale system. Consequently in landscapes with active landscape processes such as erosion, land use changes should not be analysed in isolation without accounting for both on-site and off-site effects on landscape processes. To investigate the interactions between land use, land use change and landscape processes, a case study for the Álora region in southern Spain is carried out, coupling a land use change model (CLUE) and a landscape process model simulating water and tillage erosion and sedimentation (LAPSUS). First, both models are run independently for a baseline scenario of land use change. Secondly, different feedbacks are added to the coupled model framework as ‘interaction scenarios’. Firstly effects of land use change on landscape processes are introduced by means of a ‘changed erodibility feedback’. Secondly effects of landscape processes on land use are introduced stepwise: (i) an ‘observed erosion feedback’ where reallocation of land use results from farmers’ perception of erosion features, and (ii) a ‘reduced productivity feedback’ whereby changes in soil depth result in a land use relocation. Quantities and spatial patterns of both land use change and soil redistribution are compared with the baseline scenario to assess the cumulative effect of including each of the interaction mechanisms in the modelling framework.Overall, total quantities of land use change (areas) and soil redistribution do not differ much for the different interaction scenarios. However, there are important differences in the spatial patterns of both land use and soil redistribution. In addition, by incorporating the perception and bio-physical feedback mechanisms, land use types with stable or increasing acreages are increasingly relocated from their original positions, suggesting a current location on landscape positions prone to soil erosion and sedimentation. Implementing the ‘reduced productivity feedback’ causes most of these effects. Another important outcome is that on-site land use changes trigger major off-site soil redistribution dynamics. These off-site effects are attributed to down slope or downstream changes in sediment transport rates and/or discharge caused by changes in land surface characteristics.The results of this study provide insight into the interactions between different processes occurring within landscapes and the influence of feedbacks on the development of the landscape. The interaction between processes goes across various spatial and temporal scales, leading to difficulties in linked model representation and calibration and validation of the coupled modelling system.  相似文献   
97.
Adoption of glyphosate-resistant canola (Brassica napus L.) has increased glyphosate applications to this crop, and concerns have been raised about unintended consequences of these multiple applications. A field trial was conducted to evaluate the effects of pre-seed and in-crop glyphosate and alternative herbicides on soil microbial community functional structure, diversity and biomass. Pre-seed treatments were 2,4-D, glyphosate and 2,4-D + glyphosate, and in-crop treatments were glyphosate applied once, glyphosate applied twice, ethalfluralin, ethalfluralin + sethoxydim + ethametsulfuron + clopyralid, and sethoxydim + ethametsulfuron. Rhizosphere and bulk soil was collected at flowering stage of canola and analyzed for bacterial community-level substrate utilization patterns and microbial biomass C (MBC). Where differences were significant, pre-seed application of both 2,4-D and glyphosate altered the functional structure and reduced the functional diversity of soil bacteria, but increased MBC. These effects were not necessarily concurrent. The reduction in functional diversity was due to reduction in evenness, which means that the soil where both pre-seed herbicides had been applied was dominated by only few functional groups. In 1 year, two in-crop applications of glyphosate also reduced the functional diversity of soil bacteria when applied after pre-seed 2,4-D, as did in-crop sethoxydim + ethametsulfuron following pre-seed glyphosate. Even though significant differences between herbicides were fewer than non-significant differences, i.e., there were no changes in soil microbial community structure, diversity or biomass in response to glyphosate or alternative herbicides applied to glyphosate-resistant canola in most cases, the observed changes in soil microbial communities could affect soil food webs and biological processes.  相似文献   
98.
Many endotherms save energy during food and water shortage or unpredictable environment using controlled reductions in body temperature and metabolism called torpor. In this study, we measured energy metabolism and water turnover in free-ranging grey mouse lemurs Microcebus murinus (approximately 60 g) using doubly labelled water during the austral winter in the rain forest of southeastern Madagascar. We then compared patterns of thermal biology between grey mouse lemurs from the rain forest and a population from the dry forest. M. murinus from the rain forest, without a distinct dry season, entered daily torpor independent of ambient temperature (T a). There were no differences in torpor occurrence, duration and depth between M. murinus from the rain and dry forest. Mouse lemurs using daily torpor reduced their energy expenditure by 11% in the rain forest and by 10.5% in the dry forest, respectively. There was no significant difference in the mean water flux rates of mouse lemurs remaining normothermic between populations of both sites. In contrast, mean water flux rate of individuals from the dry forest that used torpor was significantly lower than those from the rain forest. This study represents the first account of energy expenditure, water flux and skin temperature (T sk) in free-ranging M. murinus from the rain forest. Our comparative findings suggest that water turnover and therefore water requirement during the austral winter months plays a more restricting role on grey mouse lemurs from the dry forest than on those from the rain forest.  相似文献   
99.
Analyses of the elytral hydrocarbons from male and female emerald ash borer, Agrilus planipennis Fairmaire, that were freshly emerged vs. sexually mature (>10 days old) revealed a female-specific compound, 9-methyl-pentacosane (9-Me-C25), only present in sexually mature females. This material was synthesized by the Wittig reaction of 2-decanone with (n-hexadecyl)-triphenylphosphonium bromide followed by catalytic reduction to yield racemic 9-Me C25, which matched the natural compound by gas chromatography/mass spectrometry (retention time and EI mass spectrum). In field bioassays with freeze-killed sexually mature A. planipennis females, feral males spent significantly more time in contact and attempting copulation with unwashed females than with females that had been washed in n-hexane to remove the cuticular lipids. Hexane-washed females to which 9-Me-C25 had been reapplied elicited similar contact time and percentage of time attempting copulation as unwashed females, indicating that 9-methyl-pentacosane is a contact sex pheromone component of A. planipennis. This is the first contact sex pheromone identified in the Buprestidae.  相似文献   
100.
Cover crop effects on nitrous oxide emission from a manure-treated Mollisol   总被引:1,自引:0,他引:1  
Agriculture contributes 40–60% of the total annual N2O emissions to the atmosphere. Development of management practices to reduce these emissions would have a significant impact on greenhouse gas levels. Non-leguminous cover crops are efficient scavengers of residual soil NO3, thereby reducing leaching losses. However, the effect of a grass cover crop on N2O emissions from soil receiving liquid swine manure has not been evaluated. This study investigated: (i) the temporal patterns of N2O emissions following addition of swine manure slurry in a laboratory setting under fluctuating soil moisture regimes; (ii) assessed the potential of a rye (Secale cereale L.) cover crop to decrease N2O emissions under these conditions; and (iii) quantified field N2O emissions in response to either spring applied urea ammonium nitrate (UAN) or different rates of fall-applied liquid swine manure, in the presence or absence of a rye/oat winter cover crop. Laboratory experiments investigating cover crop effects N2O emissions were performed in a controlled environment chamber programmed for a 14 h light period, 18 °C day temperature, and 15 °C night temperature. Treatments with or without a living rye cover crop were treated with either: (i) no manure; (ii) a phosphorus-based manure application rate (low manure): or (iii) a nitrogen-based manure application rate (high manure). We observed a significant reduction in N2O emissions in the presence of the rye cover crop. Field experiments were performed on a fine-loamy soil in Central Iowa from October 12, 2005 to October 2, 2006. We observed no significant effect of the cover crop on cumulative N2O emissions in the field. The primary factor influencing N2O emission was N application rate, regardless of form or timing. The response of N2O emission to N additions was non-linear, with progressively more N2O emitted with increasing N application. These results indicate that while cover crops have the potential to reduce N2O emissions, N application rate may be the overriding factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号